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Abstract
In many mathematical and physical contexts, spinors are treated as Grassmann
odd valued fields. We show that it is possible to extend the classification of
reality conditions on such spinors by a new type of Majorana condition. In order
to define this graded Majorana condition we make use of pseudo-conjugation,
a rather unfamiliar extension of complex conjugation to supernumbers. Like
the symplectic Majorana condition, the graded Majorana condition may be
imposed, for example, in spacetimes in which the standard Majorana condition
is inconsistent. However, in contrast to the symplectic condition, which requires
duplicating the number of spinor fields, the graded condition can be imposed on
a single Dirac spinor. We illustrate how graded Majorana spinors can be applied
to supersymmetry by constructing a globally supersymmetric field theory in
three-dimensional Euclidean space, an example of a spacetime where standard
Majorana spinors do not exist.

PACS numbers: 11.30.Pb, 12.60.Jv

1. Introduction

One of the key ingredients to a deep understanding of the mathematical concept of spinor
fields has been the complete classification of all possible types of reality conditions that can
be imposed on spinors in a given spacetime. If spinors are treated as ordinary fields, this
classification of possible reality conditions, normally referred to as Majorana conditions, has
been given in [1]. However, though this classification of Majorana conditions nicely extends to
spinors treated as Grassmann odd valued fields, as is the case for example in supersymmetric
theories, it turns out not to be complete. To see this, first note that the components of
such Grassmann odd valued spinor fields are given by anticommuting supernumbers. Since
a Majorana condition relates a spinor to its complex conjugate, extending the notion of a
Majorana condition to such anticommuting spinor fields implies that one first has to extend

1 AFK previously published under the name A F Schunck.
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the notion of complex conjugation to supernumbers. There is, however, an ambiguity in
defining this extension, leading to at least two inequivalent notions of complex conjugation
of supernumbers. These we will refer to as standard complex conjugation [2] and pseudo-
conjugation [3], respectively. While standard complex conjugation essentially leads to the
classification of Majorana conditions as given in [1], we show that pseudo-conjugation makes
it possible to define a genuinely new type of Majorana spinor, which we will refer to as graded
Majorana.

It should be pointed out that the existence of such reality conditions in the special case of
four-dimensional Euclidean space has already been discussed in [4–6]. In this paper we will
show how this special case is part of the wider and more general scheme of graded Majorana
spinors which, as we shall see, are entirely complementary to standard Majorana spinors.

2. Pseudo-conjugation

Let us first briefly comment on the properties of standard complex conjugation and
pseudo-conjugation, respectively. While the operation of standard complex conjugation on
supernumbers is an involution, pseudo-conjugation in contrast is a graded involution. Denoting
the operation of standard complex conjugation by * and pseudo-conjugation by � we thus have

z∗∗ = z, z�� = (−1)εzz. (2.1)

Here εz = 0 if z is an even (commuting) supernumber, and εz = 1 if z is odd (anticommuting).
It is this property of pseudo-conjugation which will enable us later to define a new kind
of Majorana spinor. Additionally, standard complex conjugation and pseudo-conjugation,
respectively, satisfy the properties

(z + w)∗ = z∗ + w∗, (z + w)� = z� + w�, (2.2a)

(zw)∗ = w∗z∗, (zw)� = z�w�. (2.2b)

Note that both types of conjugation reduce to ordinary complex conjugation on ordinary
numbers.

A general supernumber can be expanded in the generators ζi, i = 1, . . . , N , of a
Grassmann algebra as

z = z0 + ziζi + zij ζiζj + zijkζiζj ζk + · · · . (2.3)

Here the coefficients z0, zi, . . . are ordinary complex numbers. With respect to standard
complex conjugation the generators will be taken to be real, i.e., ζ ∗

i = ζi . However, imposing
a similar reality condition on the generators using pseudo-conjugation will be inconsistent
with equation (2.1). Instead, without loss of generality, we will impose

ζ �
2i = ζ2i−1, ζ �

2i−1 = −ζ2i . (2.4)

This requires the number N of Grassmann generators to be even or—as one normally considers
in the context of supersymmetric theories—infinite. Note that ζ ∗�

i = ζ �∗
i , from which it

follows that standard complex conjugation commutes with pseudo-conjugation on arbitrary
supernumbers.

As we shall see, it will be convenient to split the supernumber z into a sum of two parts

z = z1 + z2, (2.5a)

z1 = 1
2 (z + z∗�), z2 = 1

2 (z − z∗�). (2.5b)

Using this splitting we define an invertible map f on even supernumbers z



Graded Majorana spinors 3789

f : z → z̃ = z1 + iz2, (2.6a)

f −1 : z̃ → z = z̃1 − iz̃2, (2.6b)

with z̃1,2 defined analogously to z1,2 in equation (2.5b). This map satisfies the property

f (z�) = f (z)∗, (2.7)

which can be shown using the fact that z�
1 = z∗

1 and z�
2 = −z∗

2. It follows that imposing a
pseudo-reality condition z = z� on an arbitrary even supernumber z is equivalent to imposing
the standard reality condition f (z) = f (z)∗ on the supernumber f (z) = z̃.

In section 4 we will consider how pseudo-conjugation may be used to impose reality
conditions on spinors, the components of which are taken to be anticommuting supernumbers.
However, we first need to recall some results about Clifford algebras, as discussed in [1].

3. Clifford algebras in d-dimensions

The Clifford algebra in d spacetime dimensions is given by

{γ µ, γ ν} = 2ηµν11,
(3.1)

ηµν = diag(+ + · · · +︸ ︷︷ ︸
t

− − · · · −︸ ︷︷ ︸
s

),

with d = t + s. The γ µ are represented by 2�d/2� × 2�d/2� matrices, which may be chosen such
that

γ µ† = γ µ, µ = 1, . . . , t, (3.2a)

γ µ† = −γ µ, µ = t + 1, . . . , d. (3.2b)

Defining A = γ 1 · · · γ t we then have

γ µ† = −(−1)tAγ µA−1. (3.3)

In even dimensions we can introduce the matrix

�5 = (−1)(t−s)/4γ 1 · · · γ d, (3.4)

which satisfies (�5)
2 = 1 and is, up to proportionality, the unique matrix which anticommutes

with all γ µ, µ = 1, . . . , d. As ±γ µ∗ form an equivalent representation of the Clifford algebra,
there exists an invertible matrix B such that

γ µ∗ = ηBγ µB−1, η = ±1, (3.5)

where η can be shown to depend on the signature of the metric, see table 1. Note that in even
dimensions, where t − s will also be even, we always have a choice of η = ±1, whereas in
odd dimensions η is fixed. B is unitary and satisfies the condition

B∗B = ε11, ε = ±1, (3.6)

where ε depends on the signature of the metric as well as on the value of η as displayed in
table 1. Note that B is only defined up to an overall phase.

The charge conjugation matrix C is defined by

C = BTA. (3.7)

Using the properties of A and B one finds that C†C = 11 and

γ µT = (−1)t+1ηCγ µC−1, (3.8)

CT = εηt (−1)t (t−1)/2C. (3.9)
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Table 1. Possible values of ε and η in all signatures.

t − s mod 8 0, 1, 2 0, 6, 7 4, 5, 6 2, 3, 4
ε +1 +1 −1 −1
η +1 −1 +1 −1
Spinor type M ′ M gM ′ gM

The last two equations can be combined to give

(γ µC−1)T = (−1)t+1+t (t−1)/2εηt+1(γ µC−1). (3.10)

Additionally we have that

(γ µC−1)∗ = ηt+1Bγ µC−1BT. (3.11)

These two relations will be important when considering super–Poincaré algebras in different
signatures, see section 5.

In even dimensions, as there is a choice of η = ±1, let us define B± such that

γ µ∗ = η±B±γ µB−1
± , B∗

±B± = ε±11. (3.12)

Here η± = ±1 and ε± is the value of ε corresponding to η± in a given signature.
Correspondingly we define C± = BT

±A.
Interestingly B+ and B− are related by

B+ = λB−�5, (3.13)

where λ is an arbitrary phase factor. This relation seems to have been overlooked in the
literature. To prove equation (3.13) note that

B−1
− B+γ

µB−1
+ B− = B−1

− γ µ∗B− = −γ µ, (3.14)

hence B−1
− B+ anticommutes with all the gamma matrices and as such must be proportional to

�5. Unitarity of both B± and �5 restricts λ such that |λ|2 = 1.
Note that using the relation between B+ and B−, equation (3.13), we find ε+11 = B∗

+B+ =
|λ|2(−1)(t−s)/2ε−11, and hence we see that

ε+ = (−1)(t−s)/2ε−, (3.15)

which is in agreement with table 1.

4. Reality conditions on spinors

In many contexts spinors are treated as Grassmann odd valued fields, i.e. the 2�d/2� components
of a general Dirac spinor are given by anticommuting complex supernumbers. Depending on
the signature of the spacetime under consideration such spinors can be constrained by reality
conditions that are both consistent with the Dirac equation and Lorentz covariant. Reality
conditions that satisfy these requirements are normally referred to as Majorana conditions.
Conventionally, only standard complex conjugation of supernumbers has been used to impose
such Majorana conditions. In this section we shall show how, by using pseudo-conjugation of
supernumbers, a genuinely new type of Majorana condition can be defined.

4.1. Standard and symplectic Majorana conditions

Let us first consider signatures in which there exists a matrix B for which ε = +1, i.e. B∗B = 11,
see table 1. We may use this matrix B to impose the standard Majorana condition

ψ = B−1ψ∗. (4.1)
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Note that imposing such a condition will not be consistent if ε = −1 since ψ =
B−1(B−1ψ∗)∗ = (B∗B)−1ψ = εψ .

In those signatures where there are only matrices B for which ε = −1 one normally
introduces a pair (or more generally an even number) of Dirac spinors ψ(i), i = 1, 2, and
imposes the symplectic Majorana condition

ψ(i) = εijB−1(ψ(j))∗ for B∗B = −11, (4.2)

where εij = −εji with ε12 = +1. This condition reduces the degrees of freedom of the pair
of spinors down to that of a single spinor with no reality condition imposed. Therefore, since
a second spinor is initially introduced in order to impose the symplectic Majorana condition,
the number of degrees of freedom is not in effect reduced.

4.2. Graded Majorana conditions

We shall now show that in signatures in which there exists a matrix B for which ε = −1, i.e.
B∗B = −11, we can—by making use of pseudo-conjugation—define an alternative Majorana
condition that, unlike the symplectic one, does not require duplicating the number of fields,
but instead can be imposed on a single spinor. We propose the condition

ψ = B−1ψ�. (4.3)

Now, since the components of ψ are anticommuting supernumbers, we have from
equation (2.1) that ψ�� = −ψ , hence ψ = B−1(B−1ψ�)� = (B∗B)−1ψ�� = −εψ and
so the equation is consistent for ε = −1. Note that here we have used B� = B∗ since B is a
matrix of ordinary complex numbers. As pseudo-conjugation is a graded involution we will
refer to spinors satisfying equation (4.3) as graded Majorana spinors.

To be complete we also note here that, in those signatures for which there exists a matrix
B for which ε = +1, pseudo-conjugation may be used to define a graded symplectic Majorana
condition

ψ(i) = εijB−1(ψ(j))� for B∗B = +11. (4.4)

Equations (4.3), (4.4) thus constitute the graded counterparts of equations (4.1), (4.2) and
highlight how graded Majorana conditions should be treated on an equal footing with the
standard Majorana conditions.

In the next section we will show how reality conditions using standard complex
conjugation and pseudo-conjugation, respectively, can be thought of as equivalent in terms of
the number of constraints they impose on a spinor.

4.3. Equivalence of reality conditions

Just as the standard Majorana condition of equation (4.1) is covariant under Lorentz
transformations so, too, is the graded Majorana condition of equation (4.3). For the purpose
of analysing the number of constraints, however, we shall also consider more general reality
conditions that may not necessarily be so. Let us introduce 2�d/2� × 2�d/2� matrices M and N
satisfying M∗M = +11 and N∗N = −11, respectively (where we require d > 1 for the matrix
N to exist). Then consider reality conditions of the form ψ = M−1ψ∗ and ψ = N−1ψ�,
encompassing the standard and graded Majorana conditions, respectively. In particular these
conditions shall be replaced with the corresponding Majorana conditions, equations (4.1),
(4.3), as long as the appropriate matrices B exist.

In order to show that the number of constraints imposed on a spinor is the same for
both ψ = M−1ψ∗ and ψ = N−1ψ� we will use an argument analogous to that for an even
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supernumber as discussed in section 2. Consider the split of equations (2.5a), (2.5b) applied
to each of the components of the spinor ψ , resulting in

ψ = ψ1 + ψ2, (4.5a)

ψ1 = 1
2 (ψ + ψ∗�), ψ2 = 1

2 (ψ − ψ∗�). (4.5b)

Using the fact that ψ∗
1 = ψ�

2 and ψ∗
2 = −ψ�

1 it is easily seen that the following two equivalences
hold:

ψ = M−1ψ∗ ⇐⇒
{

ψ1 = M−1ψ�
2

ψ2 = −M−1ψ�
1

(4.6)

and

ψ = N−1ψ� ⇐⇒
{

ψ1 = −N−1ψ∗
2

ψ2 = N−1ψ∗
1 .

(4.7)

In those signatures where there exists a matrix B such that B∗B = −11, equation (4.7) shows
how a graded Majorana condition imposed on the spinor ψ can be restated as a symplectic
Majorana condition imposed on the split fields ψ1,2 of equation (4.5a). Note, however, that
the symplectic Majorana condition is being imposed on the internal supernumber structure
of a single spinor. Conversely, in those signatures where there exists a matrix B such that
B∗B = 11, we see from equation (4.6) that the standard Majorana condition is equivalent to a
graded symplectic Majorana condition being imposed on the split fields ψ1,2. Also in this case
the symplectic condition is imposed on the internal supernumber structure of a single spinor.

Let us now define the quantity

ψ̃ = µ∗ψ1 + µM∗Nψ2, (4.8)

where µ is some non-zero, ordinary complex constant. The relationship of equation (4.8) may
be inverted to give ψ in terms of ψ̃ . To see this note that if we split ψ̃ as in equations (4.5a),
(4.5b) we have

ψ̃1 = 1
2 ((µ∗ + µM∗N)ψ1 − (µ∗ − µM∗N)ψ2), (4.9a)

ψ̃2 = 1
2 ((µ∗ − µM∗N)ψ1 + (µ∗ + µM∗N)ψ2), (4.9b)

where we have used that ψ∗
1 = ψ�

2 and ψ∗
2 = −ψ�

1 . We then find

ψ1 = 	−1((µM∗N + µ∗)ψ̃1 − (µM∗N − µ∗)ψ̃2), (4.10a)

ψ2 = 	−1((µM∗N − µ∗)ψ̃1 + (µM∗N + µ∗)ψ̃2), (4.10b)

where 	 ≡ (µ∗)211 + µ2(M∗N)2. For 	 to be invertible we must choose µ such that ±iµ∗/µ
is not an eigenvalue of M∗N , which is always possible. Hence, we find for ψ in terms of ψ̃

ψ = 2	−1(µM∗Nψ̃1 + µ∗ψ̃2). (4.11)

We can now show that a reality condition on ψ using pseudo-conjugation is, in terms of the
number of constraints imposed, equivalent to a reality condition on ψ̃ using standard complex
conjugation. From equations (4.9a–4.10b) and the fact that ψ∗

1 = ψ�
2 and ψ∗

2 = −ψ�
1 we

have

ψ1 = −N−1ψ∗
2

ψ2 = N−1ψ∗
1

}
⇐⇒

{
ψ̃1 = M−1ψ̃�

2

ψ̃2 = −M−1ψ̃�
1 .

(4.12)
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Now, combining equations (4.6), (4.7) with equation (4.12) we find that

ψ = N−1ψ� ⇐⇒ ψ̃ = M−1ψ̃∗. (4.13)

As there exists an invertible map between ψ and ψ̃ , this proves that a reality condition using
pseudo-conjugation imposes the same number of constraints as does a reality condition using
standard complex conjugation2.

4.4. Dirac equation and spinor actions

If η(−1)t = −1, see table 1, the Dirac equation for the corresponding Majorana spinors is
not consistent with a mass term [1]. It will therefore be necessary to distinguish between
the Majorana conditions corresponding to the two possible cases η = ±1. Consider first the
standard Majorana condition. If η = −1 the spinor will simply be referred to as Majorana
(M). If however η = +1 the spinor will be called pseudo-Majorana (M ′). Similarly, for the
graded Majorana condition, the spinor will be called graded Majorana (gM) if η = −1 and
pseudo-graded Majorana (gM ′) if η = +1. See table 1 for a summary. Consequently, in
Minkowski space, pseudo-Majorana spinors must be massless to be consistent with the Dirac
equation and the same is true for pseudo-graded Majorana spinors.

Now one should note that the Dirac equation for Majorana spinors cannot always be
derived from an action. Whether or not this is possible depends on the respective Majorana
condition used and on the symmetry properties of Cγµ and C. The Lagrangian for both standard
and graded Majorana spinors will be of the form3

L = ψTC(it γ µ∂µ − m)ψ. (4.14)

In the case of standard Majorana spinors one easily finds that for the action to be non-
vanishing one has to require Cγµ to be symmetric, and, if massive, we further require the
charge conjugation matrix C to be antisymmetric [7]. In the case of graded Majorana spinors
the same conditions apply. Note that in Minkowski spacetimes we have (Cγµ)T = εCγµ,
therefore an action involving graded Majorana spinors (ε = −1) will vanish. In Euclidean or
other signatures, however, this need not be the case. In Euclidean signatures, for example, an
action involving standard Majorana spinors is non-vanishing only if d = 0, 1, 2 mod 8, whereas
an action involving graded Majorana spinors is non-vanishing only if d = 2, 3, 4 mod 8.

If instead we consider parity violating Lagrangians of the form

L = ψTC�5(i
t γ µ∂µ − m)ψ (4.15)

we require C�5γ
µ to be symmetric and, in the case of massive spinors, we also require C�5 to

be antisymmetric (note that d must be even for �5 to exist). Now in Minkowski spacetimes we
have (C�5γ

µ)T = −ε(−1)d/2C�5γ
µ. Therefore such an action involving graded Majorana

spinors will be non-vanishing in Minkowski spacetimes only if d = 0 mod 4, whereas in the
case of standard Majorana spinors we require d = 2 mod 4.

Finally let us consider the Dirac action for a pair of symplectic Majorana spinors. In this
case we have

L = ψ(i)TCεij (it γ µ∂µ − m)ψ(j). (4.16)

For the action to be non-vanishing we require that Cγ µ be antisymmetric, and in the massive
case we additionally require C to be symmetric.

2 Note that in most cases only one of ψ or ψ̃ can be chosen to have the correct transformation properties under the
Lorentz group in order to be regarded as a spinor. In the cases where t − s = 2 mod 4, both ψ and ψ̃ can be chosen
to transform as spinors.
3 The appearance of the factor it is due to the fact that the mass term and the derivative term should have the same
reality properties under (pseudo-) conjugation.
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4.5. Standard and graded Majorana–Weyl conditions

Note that in even dimensions, where we have a choice of matrices B± for η = ±1, it is
possible to simultaneously impose the two corresponding reality conditions. Such spinors will
be massless due to the fact that one of the Majorana conditions imposed will necessarily be
inconsistent with a mass term. There are four possible cases which we shall analyse separately.

If t − s = 0 mod 8 we can impose both M and M ′ conditions, giving

ψ = B−1
− ψ∗ = B−1

+ ψ∗. (4.17)

Using equation (3.13) we see that a consequence of these two conditions is that

ψ = λ�5ψ. (4.18)

This equation will only be consistent if λ = ±1, in which case equation (4.18) is seen to be the
Weyl condition for a spinor with helicity λ. Note that the Weyl condition can be imposed on
spinors in any even-dimensional spacetime. Here, however, the spinors are also Majorana and
we see that consistently imposing both Majorana conditions has naturally given a Majorana–
Weyl (MW) condition. Note that the helicity of the resulting Majorana–Weyl spinor depends
on the value of λ and as such on the relative phase chosen between the matrices B+ and B− in
equation (3.13)4.

If t − s = 4 mod 8 we can impose both gM and gM ′ conditions

ψ = B−1
− ψ� = B−1

+ ψ�. (4.19)

Again we have as a consequence of these equations that ψ must satisfy the Weyl condition,
equation (4.18), with helicity λ = ±1 for consistency. We refer to such spinors as graded
Majorana–Weyl (gMW).

If t − s = 2 mod 8 we can impose both gM and M ′ conditions

ψ = B−1
− ψ� = B−1

+ ψ∗. (4.20)

The Weyl condition, equation (4.18), is no longer satisfied due to the mixed nature of the
Majorana conditions. Instead, a consequence of these two conditions is

ψ = λ�5ψ
∗�, (4.21)

where for consistency we must have λ = ±i. Note that, although ψ is not a true Weyl spinor, if
we split ψ = ψ1 + ψ2 as in equations (4.5a), (4.5b) then the combinations ψ1 ± iψ2 are Weyl.
However, the physical interpretation of the condition in equation (4.21) remains unclear.

If t − s = 6 mod 8 we have both M and gM ′ conditions. This case is very similar to
t − s = 2 mod 8.

Table 2 summarizes which reality conditions may be imposed in each of the most
interesting spacetimes.

4.6. Four-dimensional Euclidean space

It is worth mentioning here that when working in even dimensions it is common to use the
Weyl representation for spinors. The Weyl representation can be defined in full generality for
arbitrary signature in any even-dimensional spacetime; however it is perhaps most familiar
in four-dimensional Minkowski space where the use of two-component spinors with dotted
and undotted indices is quite standard. Here, however, we shall briefly discuss the case of
four-dimensional Euclidean space, demonstrating how the reality conditions imposed in [4–6]
fit into the general scheme of graded Majorana spinors.

4 Remember that the matrices B+ and B− are defined up to an overall phase only.
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Table 2. Possible types of maximal reality conditions in different spacetimes.

t
d

The four-dimensional Euclidean gamma matrices are taken to be

γ i =
(

0 −iσi

iσi 0

)
, γ 4 =

(
0 11
11 0

)
, �5 =

(
11 0
0 −11

)
. (4.22)

Here i = 1, 2, 3 and σi are the standard Pauli matrices. We choose the matrices B± in this
representation to be

B± =
(−ε 0

0 ∓ε

)
, (4.23)

where ε = iσ2. We see from the form of �5 that the four-component Dirac spinor decomposes
into left- and right-handed two-component spinors, φ and χ , as

ψ =
(

φ

χ

)
. (4.24)

The graded Majorana conditions, ψ = B−1
± ψ�, are then simply

φ = εφ�, χ = ±εχ�. (4.25)

Note that with this choice of the matrices B± imposing both graded Majorana conditions
implies χ = 0 and hence the resulting spinor will be a left-handed graded Majorana-Weyl
spinor. If we had chosen the opposite relative sign between B+ and B− the resulting spinor
would have been right-handed.

Introducing indices a, b, . . . = 1, 2 for left-handed spinors, and a′, b′, . . . = 1, 2 for
right-handed spinors, we find for equation (4.25) upon displaying the indices explicitly

φa = εab(φb)
�, χa′ = ±εa′b′(χb′)�. (4.26)

These expressions may be compared to the reality conditions imposed in [4–6]. Note that in
this signature pseudo-conjugation does not change the index type from primed to unprimed.
This is due to the fact that the left-handed and right-handed components of Spin(4) do not
mix under conjugation [4, 6], a situation which can be contrasted with, for example, four-
dimensional Minkowski space where conjugation acts to interchange the left-handed and
right-handed components of Spin(1, 3) [8].

5. Applications to supersymmetry

5.1. Real forms of the super–Poincaré algebra

We shall now investigate how these new reality conditions can be imposed to give real forms
of super Lie algebras, which will subsequently allow the derivation of supersymmetric field
theories involving graded Majorana spinors.
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Let us define the graded commutator [K,L] = KL − (−1)εKεLLK , where εK = 0 if K
is even and εK = 1 if K is odd (and similarly for L). The generators of the general N = 1
super–Poincaré algebra satisfy

[Mµν,Mρσ ] = ηµσMνρ + ηνρMµσ − ηµρMνσ − ηνσMµρ, (5.1a)

[Mµν, Pρ] = ηρνPµ − ηρµPν, (5.1b)

[Mµν,Qα] = −(σµν)α
βQβ, (5.1c)

[Qα,Qβ] = 2k(γ µC−1)αβPµ, (5.1d)

where all other commutators vanish. Here the even generators Mµν and Pµ, generating
rotations and translations, respectively, form the Poincaré subalgebra, and Qα are the
odd supersymmetry generators forming a 2�d/2� component spinor. We choose (γ µ)α

β to
correspond to the components of the gamma matrices and Cαβ to correspond to the components
of the charge conjugation matrix C. Note that with these index conventions C−1 = ((C−1)αβ).
We have σµν = (1/4)(γ µγ ν − γ νγ µ) and k appearing in equation (5.1d) is a constant phase
factor which will be determined when considering a specific real form of the algebra. Note
that if there is no matrix C available such that γ µC−1 is symmetric, see equation (3.10), such
an N = 1 algebra does not exist. One may, however, instead consider an N � 2 algebra.

The general element of the super–Poincaré algebra is given by

X = ωµνMµν + xµPµ + θαQα. (5.2)

Here ωµν, xµ are even supernumbers and θα are odd supernumbers forming a Dirac conjugate
spinor. In order to define a real form of the algebra these coefficients must be constrained by
reality conditions such that the algebra still closes. This can be achieved by using standard
complex conjugation or pseudo-conjugation, respectively.

To impose reality conditions using pseudo-conjugation we require that there exists a
matrix5 B = (Bαβ) for which ε = −1. A consistent choice of reality conditions is then given
by

(ωµν)� = ωµν, (xµ)� = xµ, (θα)�Bαβ = θβ. (5.3)

The condition on θα can be viewed as a graded Majorana condition imposed on a Dirac
conjugate spinor. Note that we consider the (pseudo-)conjugate of a quantity with an upstairs
spinor index to have a downstairs index, and vice versa. It is easily seen that the Poincaré
subalgebra of equations (5.1a), (5.1b) closes under the reality conditions of equation (5.3). To
show closure of the full super–Poincaré algebra let us first consider equation (5.1c). We have

[ωµνMµν, θ
αQα] = −ωµνθα(σµν)α

βQβ. (5.4)

For consistency with equation (5.3) the coefficient of Qβ on the right-hand side of the above
equation must satisfy

−ωµνθα(σµν)α
β = −(ωµνθα(σµν)α

γ )�Bγβ, (5.5)

which is easily checked using the fact that (σµν)
∗ = BσµνB

−1. Further we see from this that
the condition (θα)�Bαβ = θβ is Lorentz covariant. Finally let us consider equation (5.1d).
We have

[θαQα, θ̃βQβ] = −2kθαθ̃β(γ µC−1)αβPµ. (5.6)

5 Here we shall assume for simplicity that B and C are related by C = BTA. In even dimensions there may occur
more general situations which, using equation (3.13), can be treated similarly to this case.
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For the algebra to close under the reality conditions, equation (5.3), the coefficient of Pµ on
the right-hand side of the equation must be real with respect to pseudo-conjugation. Using
equation (3.11) we find

(kθαθ̃β(γ µC−1)αβ)� = k∗(θα)�(θ̃β)�((γ µC−1)αβ)∗

= k∗ηt+1(θα)�(θ̃β)�(Bγ µC−1BT)αβ

= k∗ηt+1(θα)�Bαγ (θ̃β)�(BT)δβ(γ µC−1)γ δ

= k∗ηt+1θγ θ̃ δ(γ µC−1)γ δ. (5.7)

Hence, provided we choose k such that k = k∗ηt+1, the algebra closes under the reality
conditions, equation (5.3), which therefore give a real form of the algebra.

One can alternatively use standard complex conjugation in order to define a real form of
the algebra equation (5.2). A consistent choice of reality conditions on the coefficients is, in
this case, given by

(ωµν)∗ = ωµν, (xµ)∗ = xµ, (θα)∗Bαβ = θβ, (5.8)

provided, of course, B is now such that ε = +1. That the super–Poincaré algebra also closes
under these conditions can be proven analogously to the case of pseudo-conjugation. In this
case however we find k = −k∗ηt+1.

In even dimensions we have the possibility of imposing two Majorana conditions on the
coefficients θα . Due to the resulting Weyl condition if t − s = 0, 4 mod 8 we must, in these
signatures, replace equation (5.1d) with

[Qα,Qβ] = 2k(11 + λ�5)α
γ (γ µC−1)γβPµ, (5.9)

which is possible provided that both �5γ
µC−1 and γ µC−1 are symmetric (note that here C is

a particular choice of C± = BT
±A). It is then possible to define a real form of the algebra by

imposing MW or gMW conditions on the Dirac conjugate spinor (θα) with corresponding
reality conditions on the ωµν s and xµ s. For example, let us consider t − s = 4 mod 8. The
algebra will close if we impose the gMW condition

θα = (θβ)�(B−)βα = (θβ)�(B+)
βα (5.10)

along with the conditions (ωµν)� = ωµν and (xµ)� = xµ. If t − s = 2, 6 mod 8 we may
consistently impose both a graded and a standard Majorana condition on the coefficients θα .
However, the physical interpretation of such mixed reality conditions remains unclear.

5.2. Three-dimensional Euclidean field theory

In order to illustrate the applications of graded Majorana spinors to supersymmetric field
theories, let us construct a simple example in three-dimensional Euclidean space (i.e.,
t = 3, s = 0). From table 1 we see that ε = −1 and so no standard Majorana spinors exist. We
choose the gamma matrices to be the standard Pauli matrices γ i = σi = ((σi)α

β), i = 1, 2, 3,
and we take B = ε = (εαβ). Here α = −, + are two-spinor indices and the quantity εαβ

is the invariant antisymmetric tensor with ε−+ = +1. We use εαβ to raise indices, with the
convention ψα = εαβψβ . Indices will be lowered using εαβ, ε−+ = +1, with the convention
ψα = ψβεβα . If we define Ji = − 1

2εijkMjk , then the N = 1 super–Poincaré algebra can be
rewritten as

[Ji, Jj ] = εijkJk, (5.11a)

[Ji, Pj ] = εijkPk, (5.11b)

[Ji,Qα] = i

2
(σi)α

βQβ, (5.11c)

[Qα,Qβ] = 2i(σiε)αβPi. (5.11d)
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Writing the general element of the algebra as X = ϕiJi + xiPi + θαQα we obtain a real form
by imposing reality conditions (ϕi)� = ϕi , (xi)� = xi and (θα)�Bαβ = θβ . Exponentiating the
algebra gives the super–Poincaré group, S�, from which we form the coset space S�/SO(3),
where SO(3) is the rotation group generated by the Ji . Following the method discussed in [9]
we consider a coset representative

L(xi, θα) = exp(xiPi + θαQα), (5.12)

so that (xi, θα) are coordinates on the coset space. We hence have S�/SO(3) = R
3|2 where

reality is defined with respect to pseudo-conjugation as given above.
The left action of S� on the coset representative induces a transformation on the

coordinates (xi, θα) → (xi + δxi, θα + δθα). Using this we can find the differential operator
representation of the generators of the superalgebra. In particular we have,

Qα = −∂α + i(σiε)αβθβ∂i . (5.13)

An invariant vielbein (Ei, Eα) and spin-connection �i on R
3|2 can be constructed from

the coset representative as

L−1 dL = EiPi + EαQα + �iJi. (5.14)

We find that �i = 0, and so the inverse vielbein determines the covariant derivatives, which
turn out to be

Di = ∂i, (5.15a)

Dα = ∂α + i(σiε)αβθβ∂i . (5.15b)

For an even superscalar field �(x, θ), satisfying �� = �, let us consider the action

I =
∫

d3x dθ−dθ+

(
1

2
Dα�Dα� − U(�)

)
. (5.16)

It is easily seen that [Qα,Dβ] = 0, from which it follows that this action will be invariant
under supersymmetry transformations δ� = βαQα�. We can expand � in component fields
as

�(x, θ) = A(x) + θαψα(x) + 1
2θαθαF (x). (5.17)

The condition �� = � yields A = A�, F = F � and ψα = (B−1)αβ(ψβ)�. Hence we see that
ψ is a graded Majorana spinor.

The action I can be rewritten in terms of the component fields. Upon elimination of the
auxiliary field F via its equations of motion, and integrating out the θ coordinates, I becomes

I =
∫

d3x

(
(∂A)2 − 1

4
U ′(A)2 + iψα(σ i)α

β∂iψβ +
1

2
U ′′(A)ψαψα

)
. (5.18)

This is the action for a real scalar field coupled to a graded Majorana spinor in three-dimensional
Euclidean space. For an example of a supersymmetric action involving Dirac spinors in this
signature, see [10]. Note that, as Cγ µ is symmetric in this signature, a supersymmetric action
containing a symplectic action of the form of equation (4.16) does not exist.

6. Conclusions and outlook

We have seen how the classification of possible reality conditions on Grassmann odd valued
spinors should be extended by what we call a graded Majorana condition. In contrast to
the symplectic Majorana condition which, in order to be imposed, requires an even number
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of spinor fields, the graded Majorana condition can be imposed on a single spinor. In fact,
as we showed in section 4.3 the graded Majorana condition imposes the same number of
constraints on a spinor as does a standard Majorana condition.

In order to illustrate the use of graded Majorana spinors in supersymmetric field theories
we constructed an action involving such spinors in the case of three-dimensional Euclidean
space. In globally curved space an example of the use of graded Majorana spinors is obtained
by considering field theories on the supersphere S2|2 = UOSp(1|2)/U(1), as investigated
in [11]. Graded Majorana spinors could also play an important role in the construction
of supergravity theories. In this context, an interesting example of a spacetime where no
standard Majorana spinors exist is 11-dimensional Euclidean space. It will be very interesting
to investigate whether the existence of graded Majorana spinors may account for a physically
sensible supergravity theory in this spacetime.
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